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Abstract

A new kinetic gelation model that incorporates the kinetics of non-linear free radical copolymerization is presented. Copolymerization of
bi- and tetrafunctional monomer mixtures is simulated to characterize kinetic effects on polymerization statistics and microstructures. An
algorithm for random next step selection in a self-avoiding random walk and efficient mechanisms of component’s mobility are introduced to
improve the universality of the predictions by removing commonly occurring simulation deficiencies due to early trapping of radicals. The
model has the capability to predict the onset of the sol—gel transition, and the effect of chemical composition on the transition point. It is
shown that a better understanding of microstructure evolution during polymerization and chemical gelation is attained. Lastly, one important
benefit of the simulation method is the ability to simulate very highly packed random chains or microgels within a polymer network. © 2001

Published by Elsevier Science Ltd.
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1. Introduction

During free radical copolymerization of a mixture of
vinyl-divinyl monomers, the crosslinking reactions lead
to the evolution of a three dimensional network. Kinetics
[1,2] and statistical [3] models are commonly used to inves-
tigate the reaction mechanisms and microstructures.

Due to the random nature of growing macroradicals
in the polymerization process, percolation theory is a
very useful tool to describe such disordered systems
[4,5]. The classical approach of percolation on the
Caylee tree due to Flory [6] and Stockmayer [7] is
regarded as the starting point in the theory of kinetic
gelation model (KGM) which describes the chemistry of
irreversible polymer gelation using a lattice model. The
terminology of the theory was introduced by Broadbent
and Hamersely [8].The polymer percolation model has
been mainly used [3,4,9,10] to study the critical beha-
vior near the gel point, where the assumption of a
diffusion-limited process is likely to be accurate [9].
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This behavior depends on the space dimensionality
and not on the lattice geometry [10].

In the context of polymerization, a typical percolation
model is a finite d dimensional lattice where each site is
assumed to be occupied by a functional unit. The function-
ality number varies from zero (solvent or void), to one
(initiator radical), two (usual vinylic monomer), and three
or more (for example: divinylic monomer, crosslinking
agent and some special chain transfer agent). Random
connections are then initiated between the nearest neighbor
sites to form a permanent or chemical bond.

Computer simulations based on percolation models
describe polymers that undergo the self-avoiding random
walks (SAW) on a lattice, to simulate the gelation process
during polymerization of multifunctional monomers [11].

The first percolation model proposed by Manneville and
de Seze [12], referred as the kinetic gelation model, has
been modified by a variety of researchers [11-25]. They
developed a computer model that took into account poly-
merization of a mixture of bi- and tetrafunctional monomers
in absence of any solvent on a simple cubic lattice up to 32
sites in each direction. Extensive computer simulation
studies of realistic models have been performed using
KGM [11-15]. The effect of the initiator quantity and
initiator decay kinetics [12-20], the addition of solvent
[13-15,21], and the mobility of the components [19-21],
were the early modification to KGM. Coniglio [22]
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developed a site-bond correlated percolation model to
include the solvent effects. Most of studies have been
restricted to static growth in the sense that the chemical
constituents where immobile during the course of reaction.
The mobility of the solvent, monomers and clusters have
been considered in recent studies [19,23-25]. The species’
mobility was considered to affect the trapping of radicals
with no change in overall trends in the simulation. Further-
more, several authors used KGM to describe the irreversible
gelation in vinyl/divinyl copolymerization in radical
initiated [26] and light-induced processes [16,27].

The effect of inhomogeneity in the gelation and inter-
action between solvent and polymer [28] have been con-
sidered. Also there is a lot of interest in using this
approach for example to study the phase transition and
structural evolution of thermoreversible gels [28,29] and
kinetics of living/controlled radical polymerization using
the inferter technique [30].

It is important to note that the model used in this work is
not a lattice model, but a percolation model. In the standard
percolation model, many types of networks or lattices are
used for space discretization. This is the first step in our
model and may be considered as a lattice model, but sub-
sequent steps are unrelated to those used in lattice models.
The numerical values of all percolation quantities depend on
the microscopic details of the system, such as its coordina-
tion number. But near the percolation threshold, most
percolation quantities obey scaling laws that are largely
insensitive to the network or lattice structure and other
microscopic details. Even some characteristic exponents
are completely universal, i.e. they are independent of the
microscopic details of the system and depend only on the
dimensionality of the system. Furthermore, the evolution of
microstructure of the formed gel is largely insensitive to the
network type. Thus we believe that the percolation model
used in this work is a very suitable and powerful tool to
predict the scaling behavior of gelation processes and we
consider the percolation model in a different category rather
than lattice models.

In this paper, Monte Carlo simulations using kinetic
gelation model are performed on a simple cubic lattice
with periodic boundary conditions to investigate micro-
structural evolution during copolymerization of a mix-
ture of multifunctional monomers. For this purpose, we
introduce an algorithm to overcome the trapping of
radicals in the early stages of reaction. Section 2 describes
the computational model, and defines the model pro-
perties, and Section 3 presents the results of our computer
simulations.

2. Simulation

The model used in this work is based on the Flory—Stock-
mayer [6,7] theory, which is identical to percolation on a
Caylee tree (Bathe lattice). Manneville and de Seze [12]

developed one of the first percolation models (KGM) to
examine free radical polymerization. This model was used
to study the structural evolution of polymer networks
that form during the polymerization of multifunctional
monomers.

We simulate free radical copolymerization of a mixture
of vinylic (bifunctional) and divinylic (tetrafunctional)
monomers by using a modified version of KGM. Monomers
and initiators are considered as sites on a discrete simple
cubic lattice with L® sites. Any given component is
randomly distributed on the lattice sites and periodic bound-
ary conditions are implemented on lattice faces to eliminate
edge effects. The coordination number of a simple cubic
lattice is six, which means that each site has six nearest
neighbors, however due to previous bond in each chain
head, each site has at most five possible neighbor sites to
form a bond. The next step is to initiate the growing process.
This is done by randomly placing a free radical (active
center) on a monomer site. Each initiator molecule is
considered as two near neighbor sites and decomposes
into two radicals based on the first order rate decomposition
[19].

To form a chemical or permanent bond, each radical
recognizes the capability of each nearest neighbor for
reaction; if there is at least one monomer or another active
site, the reaction takes place. If there is more than one
accessible site for the reaction, one of them is randomly
selected to form a bond, and finally if there is no site the
radical will be trapped.

By defining a random number between zero and n, an
active site selects one of these neighbors. Because each
site occupies no more than one monomer, the path of the
active site will be a self-avoiding random walk on a simple
cubic lattice. After forming a bond, the active center trans-
fers to the reacted site. In each MCS, this process will be
done by all of the active centers.

To determine polymerization quantities (i.e. reacted
sites), the Hoshen—Kopelman algorithm [31] is used. In
this algorithm, all monomers in the percolation network
are labeled in such way that those with same labels belong
to same cluster. When a bond is formed, the reacted site gets
the active site label. At each time step, the total number of
reacted sites is determined and considered as the extent of
reaction. The number of formed bonds in three directions is
measured in consecutive time intervals to assure directional
randomness of bond formation.

To improve the efficiency of the KGM, we use in this
work, two important modifications that we presented in
previous work [32]: (i) successive steps evaluation of a
growing radical and (ii) mobility of components in the
lattice. Both improvements allow to model late stage
phenomena, when few monomers remain in the lattice.

One of the most important problems in KGM is the trap-
ping of a radical, when none of the nearest neighbors has
capability to react, so a radical is trapped. To avoid or at
least delay this problem, we used the following algorithm.



M. Ghiass et al. / Polymer 43 (2002) 989-995 991

. . . .
L] . L] .

.
L] L] . L
L] L] L] L]
L] L] L] .
. L . .
. L . . . . L] L] .

Fig. 1. Schematic of the geometry of successive layers of neighboring
sites.  : first accessible layer (first neighboring sites); .: second acces-
sible layer (second neighboring sites); .: third accessible layer (third
neighboring sites).

At each step time, each active site recognizes and evaluates
the capability of its future successive sites for reaction (or
the future steps in a walk) as the first nearest-neighbor sites
(layer of first step of walker), the second nearest-neighbor
(second layer) and so on, as shown in Fig. 1. The number of
total accessible sites for each of the six (or actually five)
directions in all consequent layers is determined and the
walker selects the nearest site that has the highest number
of accessible sites. This method reduces the trapping
process even in the last stages of reaction, and adapts
according to the diffusion of radicals. The second improve-
ment of this model is the ability of all the species in the
reaction to move. We categorize the movements as single-
site and multiple-site movements. In single-site movement,
the monomers, solvent, newborn radicals and voids are
allowed to exchange their positions with each other. All
movements are in such a way that monomers move in
one of the randomly selected directions to neighboring
sites. In multiple-site movements, we consider three
types of movements: (1) the active center in a macro-
radical head moves to a neighbor site and all the
reacted monomers in the chain follow its path (repta-
tion), (2) a cluster or chain is allowed to move in one of the
six directions (central-mass or translational diffusion [29]),
(3) one or more sections in a polymer cluster or chain are
allowed to exchange their positions with surrounding sites
(segmental diffusion).

All of these movements are restricted to one lattice
unit displacement, and more importantly, all bonds are
preserved and the polymer configuration remains almost
unchanged. The main goal of these movements is to
delay the trapping of radicals and also to allow trapped
radicals to become active in later steps. Thus all move-

ments are done in such a way that the total number
of accessible sites for an active site in each MCS
increases.

2.1. Model properties

The quantities and variables of the model are as follows. p
is the extent of reaction defined as the total number of
reacted sites that belong to the clusters normalized by
total number sites in lattice; G, the gel fraction (order para-
meter of system) is defined as:

_ 4
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where ¢ is the fraction of the infinite cluster or gel phase
and ¢g is the fraction of the finite clusters in sol phase, i.e.
¢g = ngl(ng + ng) and ¢g = ng/(ng + ng), where ng and
ng are the number of monomers in gel and sol phases,
respectively, and ng + ng = N is the total number of poly-
mer unit; DP,, is the weight-average degree of polymeriza-
tion, which is the ratio of the second moment to the first
moment of the mass distribution, i.e.
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where n, is the number of clusters containing s monomers; ¢
is the correlation length (z-average of the radius of gyration
[29]), which is the measure of the spatial extension of the
connectivity, is given by:

_ >R

> s%n
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and r; denotes the position of ith connected site. Ry is also
given by a power law relation:
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where D, is interpreted as the fractal dimension of the
infinite cluster.

These quantities are monitored at each MCS time. Since
we used the concept of percolation on a lattice, it is expected
to see a percolation threshold or a scaling relation such as:

DP, ~ |p — p|" (7)

This relation is used as p approaches p., the threshold
value, but it is possible to extend its applicability far from
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this point. Different exponents were determined and even
the universality of them is controversial [4,5,10,21,28,29].

During each simulation, the information history of all
components and clusters in the lattice is stored for future
use. The whole procedure of distribution and growth is
performed N times and a statistical averages is taken. We
consider 50—100 runs depending on the fluctuations
observed; however, for large lattices increasing N does not
affect the accuracy of the results [24].

3. Results and discussion

We consider a simple cubic lattice of size L = 100 in
which initially all sites are considered as vinylic (difunc-
tional) monomers (functionality of 2). The initial initiator
concentration is 1% on a mole basis — very common in
bulk polymerization — and is introduced randomly with
first order kinetics. A specified number of tetrafunctional
monomers in accordance with tetrafunctional monomer
concentration (f4) that have four functional groups (func-
tionality of 4) are randomly distributed in the lattice, instead
of monomer sites. Since the functionality of these sites is
four, they have the capability of forming bonds in four
directions. When an active site selects a tetrafunctional
monomer in a polymer chain, a crosslinking reaction takes
places, or a branch or side-branch is formed and the two
chains with different labels unit together and get the same
label. During the reaction, this process will be repeated and
thus the number of junctions or branches increases. Gradu-
ally large chains with side branches react with each other
and at some point, a very large cluster called the infinite
cluster or gel phase forms and spans through the whole
system. The system also consists of small clusters that are
not so large, known as the sol phase. Thus at a specific
conversion p, there is a sudden change from a high number
of small clusters to one (or more) very large cluster along
with a lower number of small clusters. In a real system of
such monomers, at the sol—gel transition, the appearance of
the large cluster or insoluble gel phase takes place. This
critical value of monomer conversion is called the threshold
value, p.. So far, percolation network models used [11-25]
are considered the best simulation tool for characterizing
chemical gelation. The transition value p. depends on the
chemical nature of system (i.e. concentration of tetrafunc-
tional monomers) but the power law scaling relation is
applicable [4,5,16,23,24]. As the reaction proceeds, the poly-
merization quantities and the microstructure of gel phase,
such as entangled chains, loops, pendant double bonds
pendant chains, can be distinguished and characterized.

Fig. 2 shows the conversion of monomers p, as a function
of Monte Carlo step time, for six increasing tetrafunctional
monomer concentration (f4), and 1% initiator (these condi-
tions are the same for all figures unless stated). The results
show that the conversion profiles are weak functions of
tetrafunctional monomer concentration. The conversion
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Fig. 2. Monomer conversion p, as a function of Monte Carlo step time for
tetrafunctional monomer concentration, f4: 0.1, 0.2, 0.5, 1, 2 and 5%.

curves grow with the same trend to a final value, close to
95% of the total monomer sites. Fig. 3 shows the weight-
average degree of polymerization of the sol phase (excluded
infinite cluster) for the same system. The figure shows a
pulse for each concentration level, whose amplitude and
position (in p space) decrease as the concentration of the
tetrafunctional monomer increases. This effect is due to the
fact that at low concentration of tetrafunctional monomers,
the number of crosslinked sites or microgels is lower than
the number of chains so that the weight-average degree of
polymerization, DP, increases. At the higher concentration
of tetrafunctional monomers, the largest cluster forms and
the rest of the chains are not very long and the weight-average
degree of polymerization decreases. Fig. 4 shows the gel
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Fig. 3. Weight-average degree of polymerization DP,, as a function of
monomer conversion for tetrafunctional monomer concentration, f4: 0.1,
0.2,0.5, 1, 2 and 5%.
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Fig. 4. Gel fraction G, as a function of monomer conversion for tetra-
functional monomer concentration, f4; 0.1, 0.2, 0.5, 1, 2 and 5%.

fraction of polymer as a function of monomer conversion.
The figure shows that at low concentration of tetrafunctional
monomers, no gel forms, and as this concentration
increases, more gel, and at earlier stages of the reaction,
appear. Fig. 5 shows the conversion at gel point or the
critical conversion p. as a function of tetrafunctional mono-
mer concentration. The figure shows the same observed
trend in experimental results [33], and also shows that at
high concentration of tetrafunctional monomer, the gel
phase appears earlier, and most of the monomer sites react
with the growing cluster.

Fig. 6 shows the radius of gyration of the largest or the
infinite cluster as a function of step time for the same
concentrations. This figure shows that the radius of gyration
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Fig. 5. Concentration at the gel point or critical conversion p, as a function
of tetrafunctional monomer concentration.
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Fig. 6. Radius of gyration of the infinite cluster R;, as a function of mono-
mer conversion for tetrafunctional monomer concentration, f4: 0.1, 0.2, 0.5,
1, 2 and 5%.

grows and saturates very rapidly. This effect is due to the
fact that for a randomly growing chain, the final value of
radius of gyration in a lattice equals to L/2 and when the
growing chain senses the periodic boundaries, the radius of
gyration approaches its final value. At low concentration of
the tetrafunctional monomer, the largest cluster is not so
large that addition of the side-growing chains with the
different orientations causes the decrease in the radius of
gyration, while at high concentration of tetrafunctional
monomer, the infinite cluster is so large that the addition
of some chains does not affect its microstructure. Fig. 7
shows the radius of gyration of the infinite cluster as a
function of the number of monomer sites that belong to it.
The slope of the linear section of the curves in a logarithmic
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Fig. 7. Radius of gyration of the infinite cluster as a function of number of
sites that belong to it for tetrafunctional monomer concentration, f4: 0.1,
0.2, 0.5, 1, 2 and 5. The fractal dimension of the infinite cluster D, =
1.53 = 0.06.
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Fig. 8. Correlation length &, as a function of monomer conversion for
tetrafunctional monomer concentration, f4: 0.1, 0.2, 0.5, 1, 2 and 5%.

scale (gel growing section) defines the reciprocal of D., the
effective fractal dimension of branched polymer in solution.
The present simulation yields, D, = 1.53 = 0.06 which is in
good agreement with theoretical [4,5] and experimental
[34,35] results, and confirms the self-similarity of the fractal
structure of the chemical gels.

Fig. 8 shows the correlation length as a function of
monomer conversion for the same concentrations. As the
conversion of monomer increases, the correlation length
approaches its final value, L/2, which means that the largest
cluster form at the early stages of reaction. Also the result
shows that the initial values for the correlation length
depend on the tetrafunctional monomer concentration, but
near the critical conversion, the magnitude of & approaches
the maximum value L/2. The decrease after the critical
conversion is due to the fact that the correlation length
after this point represents only the chains and microgels in
the sol phase, and as the concentration of tetrafunctional
monomer decreases, the formed chains and microgels
have more chance to remain in the sol phase, thus the corre-
lation length increases.

4. Conclusions

A new kinetic gelation model has been presented to
describe non-linear free radical copolymerization of a
mixture of bi- and tetrafunctional monomers. The simula-
tion can also be used to investigate several polymer reac-
tions like branching, crosslinking, and vulcanization of long
chain polymers. The new simulation involves improve-
ments such as exponential decay of an initiator molecule
into two initiator radicals as neighbor sites. The efficiency
of the initiator is introduced when radicals recombine and
become inactive. A very efficient self-avoiding random
walk, based on a successive layer evaluation process, is
introduced to remove or at least delay the trapping of
radicals until the last stages of reaction, which allows

efficient polymerizations simulations with high conversions
without the need of artificial specifying sites as solvent. In
addition, several mobility mechanisms for all the single
sites, chains, and clusters like chain reptation, segmental,
and cluster diffusion are introduced. These improvements
make most of the functional groups accessible to react with
active sites, and to decrease the number of trapped radicals,
as well as the trapping frequency, thus overcoming weak-
nesses of previous models. Polymerization reaction quanti-
ties, such as the weight-average degree of polymerization,
and properties, such as the radius of gyration and the corre-
lation length, are evaluated as quantitative measures of
microstructure. The model has the ability to simulate several
realistic conditions in polymerization systems. Finally, this
work has provided an unified frame for producing a system
consisting of highly packed chains or clusters with less
than one percent of unconnected or single sites, suitable to
model polymer systems via the network approach. The
weight-average molecular weight results show a scaling
behavior near a threshold value that signals the presence
of a different mechanism before and after threshold value.
The polymerization related quantities and the microstruc-
tural properties evolution provide information to describe
the chemical nature of the resulting gels. It is also possible
to consider the solvent effect—interaction between solvent
and polymer—and the phase separation of gel phase during
gel formation. The phase behavior of polymer—monomer
system and its dependence on chemical composition of
the system is considered. The starting point of the sol—gel
transition behavior and the related threshold conversion
for realistic cases is investigated. The chemical nature of
different monomers that leads to different polymerization
processes can be evaluated if the chemical interaction
between monomer and the resulting polymer is considered.

Finally, in this work, our main goal was to understand the
scaling properties of the gelation process and to test the
capability to predict gel microstructure. In future work,
we shall attempt to use experimental data to make quanti-
tative assessments of the kinetic gelation model capabilities.
Our special interest is the evolution of molecular weight
distribution in the relatively highly crosslinked polymer
network.
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